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I. Introduction

Achieving balance between stability and performance in the presence of uncertainties is

one of the fundamental challenges faced by control engineers. Trade-offs must be made to

reach acceptable levels of stability and performance with adequate robustness to parameter

uncertainty. These trade-offs are explicitly linked to the control engineer’s choice of uncer-

tainty model as well as how that model is exploited in the synthesis process. Usually, the

assumed uncertainty model has a profound impact on the performance robustness of the

closed-loop system.

Several uncertainty models, such as norm-bounded perturbations, interval analysis, fuzzy

sets, and probabilistic methods1–3 are typically used. The most commonly used robust

control methods4 are µ-synthesis and H-infinity. In these methods, uncertainty is modeled

with norm-bounded complex perturbations of arbitrary structure about a nominal plant.

This treatment is used primarily because it leads to a tractable set of sufficient conditions

for robust stability, making the approach computationally efficient. These methods are based

on the most pessimistic value of performance among all possible ones, usually referred to

as “worst-case”. This worst-case performance is usually realized only by a single member

of the uncertain model set and by a particular input signal. No information is provided

regarding the likelihood that this worst-case will ever occur in practice. In addition, the

intrinsic mathematical requirements of the approach usually lead to conservative models of

uncertainty, over-conservative designs and complicated compensators.

Probabilistic uncertainty not only defines a set of plants where the actual dynamic sys-

tem is assumed to reside but also associates a weight, the value of the probability density

function, to each member of the set. In contrast to conventional robust control methods, this

“additional dimension” allows the pursuit of robustly optimal solutions in the probabilistic

sense. For instance, reliability-based design searches for solutions that minimize the proba-

bility of violating design requirements prescribed in terms of inequality constraints. Hence,

reliability-based control design searches for the compensator that places as much probability

as possible within the region where the design requirements are satisfied. Notice that this

allows for the search of the compensator with the best robustness for a given control struc-

ture, e.g. the most robust PID controller. This can be achieved even though the violation of

some the design requirements for some of the plants in the uncertainty set is unavoidable.

Synthesis approaches based on random searches5,6, 14 and stochastic gradient algorithms8–10
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have been applied to probabilistic robust control. In these studies, random sampling is the

primary tool for assessing and pursuing acceptable levels of robustness in the control solution.

On the other hand, asymptotic approximations11,12 for the estimation of failure probabili-

ties have only been used as a control analysis tool. Reference,13 foundation of this study,

integrates and extends some of these tools.

This paper is organized as follows. Section II presents basic concepts related to control

and probabilistic uncertainty. Section III introduces reliability metrics for random variables

and processes. Mean and variance based bounds to the reliability metrics are also derived

therein. Robustness-based metrics for random variables and processes are introduced in

Section IV. Section V presents the numerical methods used to estimate the above mentioned

metrics. The control synthesis procedure is presented in Section VI, where specifics of

both the reliability and the robustness-based formulations are examined. Two examples are

presented in Section VII, where a satellite’s attitude control problem and the disturbance

rejection in a flexible beam are used to demonstrate the method. Finally, some conclusions

are stated in Section VIII.

II. System Dynamics

Let p be a vector of random variables used to model the uncertain parameters of the

system. In this study, p is prescribed a priori by the joint probability density function

(PDF) fp(p) or equivalently by the cumulative distribution function (CDF) Fp(p)a. The set

of values that p could take, called the support of p, will be denoted as ∆p.

Consider the probabilistic model M(p) of a Linear Time Invariant (LTI) system, where

the dependence of the model on the uncertain parameters could be non-linear. The reader

must notice however, that the developments presented herein do not require the system to

be LTI. The propagation of ∆p through M leads to a set of uncertain plant models in which

the physical system is assumed to reside. The probability distribution of a plant within this

set is fully determined by M(p) and fp(p). In a transfer function representation, we will

refer to the uncertain plant as G(p) and to the compensator as K(k), where k is the vector

of design parameters to be determined. Alternatively, a state space realization of M(p)

aIn these expressions, the subscript refers to the symbol used for the random variable while the value in
parenthesis refers to a particular realization.
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leads to

ẋ = A(p)x + B(p)u + F(p)z (1)

y = C(p)x + D(p)u + E(p)v (2)

where x is the state, u is the control, z is process noise, y is the system output and v is

sensor noise. The noise signals are commonly modeled as delta correlated Gaussian white

noises satisfying E[z̃] = 0 and E[z̃(t)z̃T (t + κ)] = Sδ(κ), where z̃ = [zT ,vT ]T and S is a

constant spectral density matrix. In what follows, the explicit dependence of the matrices

in Equations (1-2) on p is omitted while D is assumed to be zero.

Important properties, typically used in control design, such as pole placement and the

Separation Principle, do not hold due to the offset between the deterministic mathematical

model and the actual dynamic system. The effects of parametric uncertainty on the Separa-

tion Principle are considered next. For the full-state feedback law u = −Gx̂ and a full-order

observer with gain L based on the expected plant E[M(p)] (any other deterministic plant

such as M(E[p]) could be used instead), the closed-loop dynamics for full-state feedback is

given by

˙̃x = Ãx̃ + B̃z̃ (3)

ỹ = C̃x̃ + Ẽz̃ (4)

Ã =


A−BG BG

A− E[A] + (E[B]−B)G

+L(E[C]−C)
(B− E[B])G + E[A]− LE[C]



B̃ =

 F 0

F −LE


where x̂ is the estimation of x, x̃ = [xT , eT ]T is the augmented state vector, e = x − x̂

is the estimation error, C̃ = [CT |0T ]T and Ẽ = [0T |ET ]T . The vector k is formed by the

feedback gain G and the observer gain L. Notice that the Separation Principle holds, i.e.,
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Ã is upper triangular, if the deterministic plant used to generate the observer matches the

physical dynamic system. Uncertainty in the plant makes the Separation Principle invalid.

In addition, the random closed-loop poles do not occur at the locations selected for the

full-state feedback, i.e. poles of the Ã1,1 subsystem, nor at the locations for the full-order

observer, i.e. poles of the Ã2,2 subsystem.

III. Reliability-Based Metrics

The propagation of a fixed set of parameters of the plant through conventional control

analysis tools leads to set of scalar quantities, e.g. closed loop poles, and a set of functions,

e.g. step responses, and Bode plots. The propagation of probabilistic uncertainty through the

same tools leads to random variables, e.g. random closed-loop poles, and random processes,

e.g. the step responses become random processes parameterized by time, and the Bode plots

become random processes parameterized by frequency. In this section we first introduce

reliability metrics for random variables and processes. These metrics will be used to quantify

the violation of the design requirements. Specific realizations corresponding to stability, time,

and frequency requirements are then provided. In general, we will use x and x(h) to denote

a random variable and a random process dependent on p through the plant model. For the

random process x(h), h refers to an arbitrary variable such as time or frequency.

A. Random Variables

We first introduce the concept of probability of failure. Let x(p) be the random variable of

interest. Let x > x be a design requirement. The event x ≤ x will be referred to as failure.

The corresponding failure set is given by F = {x | x ∈ (−∞, x]}, where the failure boundary

x is a deterministic quantity prescribed in advance. The admissible domain, namely A =

{x | x ∈ (x,∞)}, is the complement of the failure domain. The same type of discrimination

can be done in the parameter space p by using x(p). The function g(p, x) = x(p)−x, called

the limit state function, divides the parameter space in two parts, the domain leading to

A, i.e. g(p, x) > 0, and the domain leading to F , i.e. g(p, x) ≤ 0. Hence, F results from

mapping the set {p ∈ ∆p | g(p, x) ≤ 0} through x(p). In this case, the probability of failure
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Pf is given by

Pf = P[x ≤ x] =

∫
x≤x

fx(x)dx =

∫
g≤0

fp(p)dp (5)

Similar expressions can be derived if the design requirement is x < x. These expressions

describe reliability metrics for the random variable x when a single constraint is present, i.e.,

x > x or x < x. A reliability metric for the random variable x having both constraints can

be easily formed

rx(x, x)
∆
= rx(x) + rx(x) (6)

where

rx(x)
∆
= P[x ≤ x] = Fx(x) (7)

rx(x)
∆
= P[x > x] = 1− Fx(x) (8)

Notice that rx(x) is equivalent to Pf in Equation (5). We will refer to x and x as the

boundaries of the failure domain F = {x | x ∈ (−∞, x]∪ (x,∞)}. Notice that the under-bar

and the over-bar refer to the bound from below and the bound from above of the admissible

domain A = {x | x ∈ [x, x)}. This convention will be used for the remainder of the paper.

Notice that the mapping of the corresponding limit state function through x(p) leads to the

failure boundary(s). Hence, there is a direct correspondence between F and g.

B. Random Processes

The random process x(h) can be considered as the parameterization of the random variable

x by the deterministic variable h. In this paper h ∈ [0,∞] is assumed. The random process

x(h) is specified by the set of CDFs15 Fx(h)(x, h). For instance, the system output y(t) is

prescribed by Fy(t)(y, t). The evaluation of the process at a particular h value, say hi, leads

to the random variable x(hi) whose CDF is given by Fx(x) = Fx(h)(x, hi). In general, the

support and the percentiles of x(h) vary with h.

Let x(h) > x(h) for h ∈ [h1, h2] and x(h) ≤ x(h) for h ∈ [h3, h4] be design requirements

for the random process x(h). In this paper, reliability metrics for processes are formulated

by extending the ideas presented above. This is attained by integrating the reliability metric
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in Equation (6) for the random variable x(hi) in the h−interval of interest. In this context,

a reliability metric for x(h) is cast as

rx(h) (x(h), x(h))
∆
= rx(h)(x(h)) + rx(h)(x(h)) (9)

where

rx(h)(x(h))
∆
=

1

h2 − h1

∫ h2

h1

P[x(h) ≤ x(h)]dh =
1

h2 − h1

∫ h2

h1

Fx(h)(x(h), h)dh (10)

rx(h)(x(h))
∆
=

1

h4 − h3

∫ h4

h3

P[x(h) > x(h)]dh =
1

h4 − h3

∫ h4

h3

1− Fx(h)(x(h), h)dh (11)

are the costs of violating the lower and upper constraints respectively. These constraints,

namely x(h) and x(h), will also be referred to as failure boundary functions. Notice that the

failure domain

F =

 ⋃
h∈[h1,h2]

{(x, h)|x ≤ x(h)}

 ∪

 ⋃
h∈[h3,h4]

{(x, h)|x ≥ x(h)}


is delimited by the failure boundaries. The reader shall realize that Equation (9) is a natural

extension of Equation (6). If the process is contained within the set A the reliability metric

rx(h) is zero, meaning that the inequality constraints are satisfied for all parameter values in

∆p.

C. Realizations

1. Robust Stability

A LTI system is robustly stable if all its poles are in the open left half of the complex plane

for all possible values of the random parameters. A reliability assessment of stability is given

by

P

[
v⋃

i=1

(<[si] > 0)

]
= ε

where si with i = 1, 2, . . . v is a random pole, <[·] is the real part operator and ε is the

resulting probability of instability. Robust stability is attained if ε = 0. Stability can also
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be cast via

λ
∆
= max{<[s1],<[s2], . . . ,<[sv]} (12)

In terms of λ, the probability of instability is given by rλ(0). Robust stability is attained

if rλ(0) = 0. Several comments are now pertinent. Reaching robust stability may not be

feasible for the given support ∆p (even if it is bounded) and the assumed control structure

K(k). Notice also that the acceptance of a small non-zero probability of instability could be

desirable from the performance point of view. For instance, allowing the right low-probability

tail of fλ(λ) to lie on the open right half of the complex plane may yield a significant

enhancement in the performance of the plants associated with the high probability portions

of the PDF. Rather than advocating for the acceptance of the risk that this practice implies,

we would like to highlight that the trade-off between robustness and performance can be

studied by allowing small values of ε.

2. Time-Domain

Quite frequently performance requirements are prescribed in terms of time-domain specifi-

cations. The propagation of fp(p) through the system dynamics leads to random processes

for the time responses. Denote by x(t) an arbitrary random process with CDF Fx(t)(x, t).

Such process is parameterized by p, time t, and the compensator design variable k. The

dependence of x(t) on k has been omitted for the sake of simplifying the notation. Reliability

metrics for relevant processes can be cast using Equation (9). For instance, while settling

time and overshoot requirements are integrated using ry(t)(y(t), y(t)), the control saturation

requirement |u| < umax leads to ru(t)(−umax, umax).

A reliability metric for assessing the effects of noise on the uncertain plant is formulated

next. The state covariance matrix, defined as Q(t) = E[x̃(t)x̃T (t)], is given by the solution

to the covariance equation

Q̇ = ÃQ + QÃT + B̃SB̃T (13)

subject to Q(0) = Q0. The output covariance, defined as E[ỹ(t)ỹT (t)], reaches the steady-
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state Root Mean Square (RMS) value

ỹrms = lim
t→∞

(
diag

[
C̃Q(t)C̃T

])1/2

(14)

Notice that uncertainty in p makes ỹrms a random vector. If yrms is a component of ỹrms,

a reliability metric that penalizes the violation yrms > yrms is given by ryrms(yrms).

3. Frequency-Domain

The propagation of fp(p) through the system dynamics onto the frequency domain leads to

random processes of the form x(ω), fully specified by Fx(ω)(x, ω). Here, x(ω) is any real fre-

quency dependent metric of the feedback loop, e.g. Bode magnitude. This random process

is parameterized by p, frequency ω, and the compensator design variable k. A reliability

metric for x(ω) is rx(ω)(x(ω), x(ω)). For instance, conventional control requirements16 for dis-

turbance rejection, noise attenuation and reference tracking can be cast in terms of the loop

transfer function q(ω)
∆
= |GK|. Low frequency requirements can be cast using rq(ω)(q(ω))

with q(ω) = 1 and high frequency requirements with rq(ω)(q(ω)) for which q(ω) has a proper

roll off.

D. Reliability Bounds

The following lemma defines bounds for the reliability metrics in terms of the first two order

moments.

Lemma 1. Let E[·] and V[·] denote the expected value and variance operators.

rx(x) ≤ V[x]

(E[x]− x)2
if x < E[x] (15)

rx(x) ≤ V[x]

(x− E[x])2
if x > E[x] (16)

Proof. If ε > 0

V[x] ≥
∫
|x−E[x]|>ε

(x− E[x])2 fx(x)dx ≥ ε2P [|x− E[x]| > ε] ≥ ε2P [x < E[x]− ε]

We obtain Equation (15) using x = E[x] − ε. Equation (16) is derived following the same

lines.
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Notice that these bounds apply to any PDF of x. Since the bounds given in Equations

(15-16) are solely dependent on the first two order moments they can be estimated more

efficiently than exact failure probabilities. Notice however that the use of bounds instead of

reliability metric introduces conservatism into the solution.

bx(x, x)
∆
= bx(x) + bx(x) (17)

where

bx(x)
∆
=

 V[x]
(E[x]−x)2

if x < E[x]

∞ otherwise
(18)

bx(x)
∆
=

 V[x]
(x−E[x])2

if x > E[x]

∞ otherwise
(19)

As before, the under-bar and over-bar in b refer to the way in which the failure event is

defined. Notice that rx ≤ bx, rx(x) ≤ bx(x), and rx(x) ≤ bx(x). The same idea, extended to

random processes, leads to

bx(h) (x(h), x(h))
∆
= bx(h)(x(·)) + bx(h)(x(h)) (20)

where

bx(h)(x(h))
∆
=

 1
h2−h1

∫ h2

h1
bx(x(h))dh if x(h) < E[x(h)] ∀h ∈ [h1, h2]

∞ otherwise
(21)

bx(h)(x(h))
∆
=

 1
h4−h3

∫ h4

h3
bx(x(h))dh if x(h) > E[x(h)] ∀h ∈ [h3, h4]

∞ otherwise
(22)

As before, rx(h) ≤ bx(h), rx(h)(x(h)) ≤ bx(h)(x(h)) and rx(h)(x(h)) ≤ bx(h)(x(h)).

IV. Robustness-Based Metrics

Some performance requirements might not be properly captured in a conventional relia-

bility formulation since they focus on the bulk portion of the PDF. Throughout this paper

the term robustness is used to describe the design characteristic that evaluates the perfor-

mance degradation from an ideal deterministic behavior caused by uncertainty. Robustness
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metrics, that quantify such a characteristic, are presented next. For random variables, the

index

τx(x̂) =

∫
∆x

(ξ − x̂)2fx(ξ)dξ = V[x] + E[x](E[x]− 2x̂) + x̂2 (23)

is a measure of the concentration of fx(x) about the deterministic target value x̂. In the

ideal case when fx(x) = δ(x− x̂), we obtain τx(x̂) = 0. For random processes, the index

τx(h)(x̂(·)) =
1

h6 − h5

∫ h6

h5

τx(x̂(h))dh (24)

is a measure of the concentration of the process x(h) about the deterministic target function

x̂(h) in h ∈ [h5, h6]. The reader must notice that the evaluation of the above expressions

only requires of the first two order moments of the process.

Robustness-based metrics parallel to the ones provided in Section C can easily be posed.

For instance, if yrms is the RMS steady state value of an error signal, the index τyrms(0)

quantifies the offset between the target behavior ŷrms = 0 and the random variable yrms.

Likewise, the metric τu(t)(0) quantifies the offset between the random process u(t) and the

target û = 0, for which no actuation is required.

V. Numerical Estimation

Since the estimation of the metrics for random processes are a natural extension of the

methods for random variables, only the estimation of the statistics of x is addressed here.

The extension to processes is as follows. For the random process x(h), create a uniform

sample of e points h1, h2, . . ., he in the h-domain. We will refer to these samples as the e

h-samples. Statistics for the resulting e random variables xi = x(hi), i = 1, 2 . . . e are then

used to estimate the pertinent integrals, i.e. Equations (10-11), (21-22) and (24).

A. Mean and Variances

The reliability bounds and the robustness metrics introduced above depend exclusively on

mean and variances. In this paper, Sampling and the First and Second Moment Second

Order approximations are used for their estimation. These methods are briefly introduced

next.
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1. Sampling

Unbiased estimators for the mean and variance of the random variable x are

E[x] ≈ 1

n

n∑
i=1

xi (25)

V[x] ≈ 1

n− 1

n∑
i=1

(xi − E[x])2 (26)

where xi = x(pi) is the ith sample. The pi sample of fp(p) can be generated by any sampling

technique.

HSS generates representative deterministic samples of fp(p). The error of approximating

an integral by a finite number of samples of the integrand, depends on the uniformity of

the points used to generate the samples rather than on their randomness. This fact has

motivated the development of deterministic sampling techniques such as HSS. While con-

ventional Monte Carlo Sampling (MCS) is based on the generation of random points on the

unit hypercube, HSS is based on the generation of an evenly distributed set points. The

reader can refer to13 for details on HSS implementation.

HSS requires far fewer samples18 than MCS5–7,14 for a given confidence level. Improve-

ments in the convergence rate of the estimated first two order moments by a factor of three

to one hundred19 have been reported. In addition, the estimated value of the failure proba-

bility based on HSS is deterministic. In contrast, MCS leads to random estimates unless an

infinite number of samples is used. This is especially noticeable if n is small. The random

character of the estimation can only be mitigated by increasing the number of samples, which

incidentally increases the computational demands of algorithms based on MCS. Therefore,

HSS not only leads to more accurate estimations than MCS for a given number of samples

but also eliminates the random character of the results.

2. First and Second Moment Second Order Approximations (FSMSO)

These approximations result from calculating the first and second moment of a second order

Taylor expansion of x(p) about E[p]. Let p ∈ Rm, and pi be the ith component of p. If the
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components of p are independent random variables, the resulting approximations are

E[x] ≈ x +
1

2

m∑
i=1

∂2x

∂p2
(i)

V[p(i)] (27)

V[x] ≈
m∑

i=1

( ∂x

∂p(i)

)2

V[p(i)] +

(
∂x

∂p(i)

)(
∂2x

∂p2
(i)

)
T[p(i)] +

1

4

(
∂2x

∂p2
(i)

)2 (
F[p(i)]− V[p(i)]

2
)

+
m∑

i=1

m∑
j 6=i

1

2

(
∂2x

∂p(i)∂p(j)

)2

V[p(i)]V[p(j)] (28)

where the functions and derivatives are evaluated at E[p], T[·] is the third central moment

operator and F[·] is the fourth.

In general, reliability metrics cannot be evaluated exactly since they involve the evaluation

of complicated integrals, usually multi-dimensional, over complex domains. The estimation

of failure probabilities, basic component of the reliability metrics, can be done using sampling

or asymptotic approximations. The reader can refer to13 for details on their estimation.

VI. Control Synthesis

A. Reliability-based

The formulation of the control design problem from a reliability perspective is as follows.

For a given plant model, compensator structure, uncertainty model, and a set of design

requirements prescribed via inequality constraints; one would like to find the compensator

parameters for which the resulting probability of violating the design requirements is mini-

mized. Notice that this refers to the excursion of the outcomes into the failure domains.

1. Robustness Considerations

The reliability metrics in Equations (6-9) are usually applied using a fixed failure set F .

In this form, a reliability analysis cannot assess the system’s performance in the regions

where the design requirements are satisfied, i.e. the intersection of the admissible domains

associated with all the design requirements. Since the portion of the random outcome lying

in the admissible domain A might end up being substantially larger than the portion lying

in the failure domain F , a reliability-based approach with fixed failure boundaries does not
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have control over the bulk portion of the PDF, which is the portion that dictates the most

likely performance.

We now introduce the concept of a shapeable failure set F with an example. Let x(k)

be the stationary RMS value of an error signal. One would like to find k such that x is as

close as possible to zero. Uncertainty in the plant makes x a random variable. Let x be

the failure boundary associated with the design requirement x < x, i.e. a fixed failure set is

F = {x | x ∈ [x,∞)}. The minimization of rx(x) leads to reliability optimal compensators.

Suppose there exist multiple designs leading to rx(x) = 0. These designs however differ in

how well the resulting PDF of x spreads over the admissible domain A = {x | x ∈ [0, x)}.
The concentration of fx(x) about zero is an indicator of the robust performance. Say, for

example, that k1 leads to rx(x/2) = 0 and k2 leads to rx(x) = 0. Since neither of these

two designs violate the design requirement, a reliability analysis cannot establish that the

compensator with parameters k1 has a better robust performance than the one which uses

k2.

By minimizing the reliability metrics and simultaneously shrinking the admissible do-

main, the whole random variable/process can be concentrated about regions with an im-

proved system performance. This is attained by parameterizing the failure boundaries of

F as well as a penalizing function γx with an additional design variable, namely e. The

basic idea is to solve an optimization problem for the design variable d = [k, e] such that a

twofold objective is pursued: a reliability metric is minimized while the size of A is reduced.

For the RMS example above, the minimization of J = rx(e) + γx where γx = e, d = [k, e]

and e ∈ [0, x], leads to the desired solution. This setting implies F = {x | x ∈ [e,∞)} and

A = {x | x ∈ [0, e)}. See Figure 1. Notice that the value of J for k1 is less than the one for

k2 if e ∈ [x/2, x). In general, we will refer to the augmented reliability metric as the sum of a

reliability metric from Section III and a penalizing term. Augmented reliability metrics for

the random variable x and the random process x(h) take the form rx(x(e), x(e))+γx(e) and

rx(h)(x(h, e), x(h, e)) + γx(h)(e) The penalizing functions γx(e) and γx(h)(e) must be propor-

tional to the size of the admissible domain A. In addition, they must be built such that the

minimization of the augmented metric does not lead to unacceptable solutions, e.g. rx = 1

and γx = 0. If rx < ε is required, use a monotonically increasing function satisfying γ ∈ [0, ε].

In the RMS example above, this is attained by minimizing an augmented reliability metric

with γx(e) = εe/x for e ∈ [0, x].
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Figure 1. Robust performance concepts and shapeable failure domains

B. Robustness-based

The formulation of the control design problem from a robustness perspective is as follows.

For a given plant model, compensator structure, and uncertainty model; one would like to

find the compensator parameters for which the resulting random outcome is as concentrated

as possible to a target deterministic behavior. While the deterministic target for a random

variable is a scalar, the target for a random process is a function, e.g., û(t) = 0 is the target

function for the control.

C. Synthesis Procedure

A step-by-step procedure to control synthesis is presented next.

1. Determine the plant model and the control structure. First principles and classical

deterministic approaches to compensator design can be used. Identify the set of pa-

rameters that have a strong impact on the plant model. Use sensitivity information

and engineering judgment to select the set of uncertain parameters p. At this stage,

the parametric plant model, i.e. G(p), and the control structure, i.e. K(k), must be

fully determined.
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2. Generate the probabilistic parameter model fp(p). Use engineering judgment and

experimental data if available.

3. Cast the design requirements, either reliability or robustness based, in terms of the

metrics introduced above. Use Equations (6,9) for the reliability metrics and Equa-

tions (23,24) for the robustness metrics. Recall that while each reliability requirement

requires setting a failure domain F , each robustness requirement requires setting a

target behavior. Use these metrics to compose the cost vector c, which is the vector of

objectives for multi-objective optimization.

4. Let d be the design variable. For robustness-based metrics and reliability-based metrics

with fixed failure domains, d = k. Reliability-metrics with shapeable failure domains

lead to d = [kT , eT ]T . Build a penalizing function γ(e) for these terms. Update the

components of the cost vector c by adding the penalizing functions and parameterizing

the failure boundaries.

5. Solve the single objective optimization problem

d∗ = argmin
{
cTw

}
(29)

where w is composed of non-negative weights. Each cost function evaluation used in

the search for the optimal design d∗ requires a probabilistic analysis. This analysis is

done by calculating the metrics contained in c. Either sampling or FSMSO can be used

to estimate the mean and variance based metrics introduced above. This task requires

forming the closed-loop Equations (3-4) and performing typical control studies such as

finding closed loop poles, time responses and Bode plots.

The cost vector c can be formed by combinations of reliability-based metrics, reliability

bounds and/or robustness-based metrics. The corresponding implications are explored in

the examples.

D. Optimization under Uncertainty

Let J(p,d) = cTw denote the cost function of the optimization problem. If reliability

metrics are used in in c, the cost function might not only have plateaus, i.e., there could

exist a design d and a non-zero perturbation δ such that J(p,d) = J(p,d + δ), but might
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also have a discontinuous gradient. The use of sampling in the estimation of probabilities

makes the cost function piecewise constant. Let Je(p,d) be an estimation of the actual cost

J(p,d). For any design d and regardless of the number of samples, there always exists a

perturbation δ such that Je(p,d) = Je(p,d + δ). This situation is aggravated, i.e. bigger

perturbations can be found, when a smaller number of samples is used or when Pf is close

to zero or one.

Mean and variances can be estimated via HSS or FSMSO. Their estimation via sampling

does not exhibit the numerical problems mentioned above. Among the sampling techniques,

it was found that HSS suites very well the need for an accurate and efficient estimation.18

Estimation via FSMSO is considerably faster than sampling but less accurate in general.

This is because, the Taylor expansion might become a poor approximation of the actual

function when fp(p) is not concentrated about E[p]. The methods used for the estimation

of Je must be taken into account when selecting an optimization algorithm. In this paper, we

use the Nelder Mead Simplex algorithm, which is a local non-gradient based search method.

VII. Numerical Examples

The synthesis procedure of Section C is applied herein to two examples. A textbook

satellite attitude control problem is considered first. Then, the active control of a flexible

beam subject to disturbances is considered. The following parameter values are assumed in

both problems. If p ∈ Rm, and sampling is used, a coarse probabilistic analysis is performed

using n = 75m p-samples and e = 90 h−samples. If the resulting assessment is satisfactory, a

new analysis is performed using n = 500m p-samples and e = 180 h−samples. This two-step

analysis is carried out to adjust the fidelity of the estimation according to the characteristics

of the compensator. For the sake of comparison, the examples also present the analysis of

deterministic versions of the problems for which E[p] is used as parameter values. Such

problems and their solutions will be referred to as the nominal ones.

A. Satellite Attitude Control

Accurate satellite pointing in the presence of large thermal gradients and mass losses for

uncertain initial conditions is desired. A simple rotational model of two bodies connected
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with a flexible boom leads to

J1θ̈1 + b(θ̇1 − θ̇2) + k(θ1 − θ2) = u

J2θ̈2 + b(θ̇2 − θ̇1) + k(θ2 − θ1) = 0

where θ1 and θ2 are the deflection angles, J1 and J2 are moments of inertia, k is the equivalent

stiffness, b = a
√

k/10 is the equivalent damping coefficient and u is an applied torque. The

variable a is used to model the changes in damping caused by thermal variations. Assume

that J2 = 0.1 since mass losses only affect J1. The non-collocated sensor-actuator pair

resulting from using y = θ2 leads to the SISO system

G(p) =
k + bs

J1J2s4 + b(J1 + J2)s3 + (J1 + J2)ks2
(30)

Variations in the operating conditions and ignorance on the initial conditions are modeled

using p = [J1, a, k, θ10, θ̇10, θ20, θ̇20]
T , where θ10 = θ1(0) and θ20 = θ2(0). The following

output-feedback control structure is assumed

K(k) =
k1 + k2s + k3s

2 + k4s
3

k5 + k6s + k7s2 + k8s3
(31)

The joint PDF that describes the uncertainty in p is given by the independent random

variables listed in Table 1, where U and B refer to Uniform and Beta distributions. Notice

that the Beta distribution has four independent parameters, two of them are the conventional

arguments and the other two are the support bounds.

1. Nominal Compensator

A baseline compensator for the nominal plant is designed by standard pole placement tech-

niques such that the resulting closed-loop system is robustly stable for the uncertainty set

defined above. This was achieved by pursuing large stability margins. This practice results

in a compensator with parameters k1 = 106[0.0108,−0.3271, 0.1192, 0.0092, 1.8835, 2.1305,

2.2276, 0.9308]T . The analysis of the nominal compensator using fp(p) indicates that the

closed-loop system is robustly stable as intended, i.e. rλ(0) = 0, but the time responses are

unsatisfactory. The CDF of λ as well as the time evolutions of the output and the control
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Table 1. Uncertainty model.

J1 ∆J1 = [0.8, 1] fJ1(J1) = U(0.8, 1)

a ∆a = [0.03, 0.2] fa(a) = B(0.3, 0.2)

k ∆k = [0.09, 0.4] fk(k) = B(5, 5)

θ10 ∆θ10 = [−π/2, π/2] fθ10(θ10) = B(5.2, 5.2)

θ̇10 ∆θ̇10
= [−15, 15] fθ̇10

(θ̇10) = B(2.5, 2.5)

θ20 ∆θ20 = [−π/2, π/2] fθ20(θ20) = B(5.2, 5.2)

θ̇20 ∆θ̇20
= [−15, 15] fθ̇20

(θ̇20) = B(2.5, 2.5)

signals are shown in Figures 2-4. The sudden variation in the slope of the CDF of λ in Fig-

ure 2 is the result of a change in the closed-loop pole that determines λ. The considerable

disparity between λ(E[p]) and E[λ(p)] shows that the nominal problem is not a meaningful

representative of the probabilistic behavior. Figures 3 and 4 show the time evolution of the

random signals by indicating the 1, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 99 percentiles. In

Figures 3 and 4, the percentiles and the nominal functions are shown. Dotted lines are used

to indicate the failure boundaries, specified in the next section. It is interesting to see how

the PDFs expand, e.g. Figure 4 at 2.5 and 8 seconds, and contract, e.g. Figure 4 at 4 and

16 seconds, in a oscillatory manner. This information can be used to determine the time

periods when the effects of uncertainty are more noticeable.

2. Mean and Variance based compensator

If only means and variances are used, reliability and robustness metrics can be combined to

form c = [bλ(0), τy(t)(1), τu(t)(0), bq(ω)(1), bq(ω)(0.75/ω)]T . Ranges provided before will be

used with the exception of ω ∈ [5, 102] for b. The cost vector can be estimated via sampling

or the FSMSM.

HSS leads to k3 = 105[1.1207, 0.2307, 1.5235, 0.1713, 0.001, 0.0692, 1.2294, 1.069]T and c =

[8.6 × 10−5, 0.0057, 0.0129, 1.94 × 10−4, 6.189 × 10−5]T for which the weighting vector w =

[500, 1, 4, 1, 1]T was used. A probabilistic analysis of this compensator leads to Figures 5, 6

and 7. Figure 5 shows that the optimal compensator makes λ insensitive to uncertainty, i.e.

the CDF resembles a step function which would result if the system is deterministic. The
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Figure 2. CDF of λ for the nominal compensator.

reader must notice that the bound on the stability condition tends to reduce the variability

of λ. This artificially reduces the design space, i.e. there might exist solutions with a better

performance in which large variances in λ occur. This is a consequence of the form of the

bound. This problem has been studied in reference13 using reliability metrics exclusively.

We will refer to this compensator as the reliability compensator. The comparison between

the time responses for the reliability compensator and Figures 6 and 7 show substantial

differences between the two solutions. While the control for the reliability based compensator

intends to keep the process within the strip |u| < 0.5, the mean and variance based solution

intends to concentrate the random process about the target function û = 0. It can be seen

that this is achieved by inducing oscillations about the target function. The reader should

also notice that excursions beyond the failure boundaries in a reliability formulation, are

not penalized according to the severity of the violation. This is in sharp contrast with the

mean and variance formulation. The CPU time for the finer assessment, i.e. the one using

n = 500m p samples, is 77s. For a given number of samples, the estimation of means and

variances is in general more accurate than the estimation of failure probabilities. Small
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Figure 3. y(t) for the nominal compensator. A zoom is shown below.

sample sets however, result in larger estimation errors of the moments, which could lead to

the selection of the wrong conditions in Equations (18-19) and (21-22).

Next, the FSMSO method is used. The first and second order derivatives for all the

metrics of interest, i.e. closed-loop poles, output, control and loop transfer function, were

derived analytically. Some of the required expressions are as follows
˙̃x

∂ ˙̃x

∂2 ˙̃x

 =


Ã 0 0

∂Ã Ã 0

∂2Ã 2∂Ã Ã




x̃

∂x̃

∂2x̃

+


B̃

∂B̃

∂2B̃

u (32)


ỹ

∂ỹ

∂2ỹ

 =


C̃ 0 0

∂C̃ C̃ 0

∂2C̃ 2∂C̃ C̃




x̃

∂x̃

∂2x̃

 (33)

where Ã, B̃, C̃, and D̃ were given in Equations (3) and (4), x̃ = [xT
c ,xT ]T , ∂[·] indicates a
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Figure 4. u(t) for the nominal compensator.

derivative with respect to p(i) excluding initial conditions, and

Ã
∆
=

 Ac −BcC

BCc A−BDcC

 ,

∂Ã =

 0 −Bc∂C

∂BCc ∂A−BDc∂C− ∂BDcC

 ,

∂2Ã =

 0 −Bc∂
2C

∂2BCc ∂2A−BDc∂
2C− 2∂BDc∂C− ∂2BDcC

 ,

B̃
∆
=
[

Bc BDc

]T
, ∂B̃ =

[
0 ∂BDc

]T
, ∂2B̃ =

[
0 ∂2BDc

]T
,
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Figure 5. CDF of λ for the mean and variance based compensator.

C̃
∆
=
[

0 C
]
, ∂C̃ =

[
0 ∂C

]
, ∂2C̃ =

[
0 ∂2C

]
In these expressions, the subscript c refers to the state space representation of the com-

pensator K while the matrices with no subscript refer to the open-loop plant. The time

evolution of the sensitivities is calculated by solving the state space model in Equations

(32-33). Sensitivities with respect to initial conditions can be analytically calculated via the

matrix exponential. Such developments as well as the ones for the other sensitivities are

omitted due to space limitations. In general, the analyses based on FSMSO were inaccurate

when compared with sampling. Even though the CPU time per analysis was reduced to

2 seconds, large errors in the estimation precluded its use for synthesis. Table 2 shows a

comparison between the assessments resulting from HSS and FSMSO as the variance of the

uncertain parameters is increased. The same PDFs for the input uncertainty of Table 1 are

used while the means are kept constant. The right most column shows the average relative

error in the components of c. For the Beta distributions, the increase of the variance was

attained by enlarging the support. The terms resulting from the crossed derivatives were

neglected. It can be observed that the accuracy of the FSMSO estimation rapidly decreases
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Figure 6. y(t) for the mean and variance based compensator. A zoom is shown below.

as fp(p) is less concentrated about its mean. This trait is obvious since large excursions

from E[p] might considerably degrade the accuracy of the Taylor approximation.

The use of reliability bounds introduces unnecessary conservatism into the problem. To

show the reduction in the design space caused by using bλ(0), we have solved this prob-

lem using rλ(0) instead. This practice results in the compensator k4 = 105[0.9082, 0.3590,

1.1773, 0.2372, 0.001, 0.0616, 1.0432, 1.196]T for which c = [1.86×10−5, 0.0052, 0.0121, 1.845×
10−4, 6.10× 10−5]T . Figure 8 shows that ∆λ is about 10 times larger than the one in Figure

5. Actually, V[λ] is about 2276 times larger. Large variance values in a formulation using

reliability bounds lead to the penalization of the compensator in spite of its actual improved

performance. The reader should also notice that there is an offset of about 10% between

E[λ] and λ(E[p]). Performance improvements in all the metrics can be seen in Figures 9 and

10.
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Figure 7. u(t) for the mean and variance base compensator

B. Disturbance Rejection for a Flexible Beam

The second example will focus on a reliability-based disturbance rejection solution for a

flexible beam test article with both physical and modal parameter uncertainties. The system

consists of a flexible thin aluminum blade, one-meter long, attached at its base to a hub

motor. The hub motor is the control actuator for the system. At the tip of the beam, there

is a reaction wheel that serves as a disturbance generator. The test article has nine sensors

that may be used in any combination for either feedback or performance output monitoring.

The finite element method is used to model this system by utilizing Euler-Bernoulli planar

beam elements. A complete description of the flexible beam test article20 is available.

For this paper a SISO problem where the input u is the hub motor torque and the

measured output y is the tip velocity, is studied. The tip reaction wheel disturbance is

modeled by passing a Gaussian white noise process through a second-order linear low-pass

filter, with parameters ζ = 0.8 and ωn = 200π rad/s. The first five modes of the elastic

structure are used to build a state space realization of the plant. This, in addition to

the disturbance model leads to an open-loop system where x ∈ R12, u ∈ R and y ∈ R.
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Table 2. Comparison of HSS and FSMSO for k3.

V[p(i)] for Cost vector Average

i = 1, . . . 7 c error

1× 10−4 cHSS = 10−3[0.000823, 0.0096, 0.5880, 0.0058, 0.0013] 0.3%

cFSMSO = 10−3[0.000827, 0.0095, 0.5880, 0.0058, 0.0001]

1× 10−3 cHSS = 10−3[0.00824, 0.0110, 0.6560, 0.0580, 0.0136] 4%

cFSMSO = 10−3[0.00823, 0.0108, 0.7720, 0.0580, 0.0133]

3× 10−3 cHSS = 10−3[5.1000, 0.0505, 0.8800, 0.1745, 0.0446] 57%

cFSMSO = 10−3[0.0247, 0.0194, 1.9160, 0.1740, 0.0408]

4× 10−3 cHSS = 10−3[32.400, 0.0013, 1.0880, 0.2330, 0.0626] 454%

cFSMSO = 10−3[0.0329, 0.0267, 2.8680, 0.2320, 0.0548]

Figure 8. CDF of λ for a compensator with parameters k4.

The uncertain parameters are the Young’s Modulus E (Pa), the density ρ (Kg/m3) and the

damping ratios of the retained vibration modes. This set leads to p = [E, ρ, ξ1, ξ2, ξ3, ξ4, ξ5]
T ,

whose components are assumed independent. The corresponding PDFs are given in Table
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Figure 9. y(t) for a compensator with parameters k4. A zoom is shown below.

3. The mean value of the parameters E[p] is set to coincide with the parameters in the

finite element model. These mean values were chosen to match experimental data, while

the supports of the distributions were set according to reasonable ranges of variation. The

shapes of the PDFs were arbitrarily set. Performance requirements on stability and the

output RMS are considered. Full-state feedback with a full-order observer determine the

control structure.

1. Nominal Compensator

As before, a baseline compensator for the nominal plant is designed such that the RMS value

is minimized. The resulting compensator, denoted as d1, leads to yrms = 0.011 m/s. The

propagation of the uncertainty prescribed in Table 3 through the closed loop-system show

that this compensator is robustly unstable with rλ(0) = 0.235.
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Figure 10. u(t) for a compensator with parameters k4

2. Reliability-based Compensator

For the sake of comparison, a reliability compensator will be synthesized using the hybrid

method of reference.13 In particular, a shapeable failure domain for the RMS requirement is

assumed. This leads to the cost vector c = [rλ(0), ryrms(e) + γyrms]
T , where e ∈ [0, 0.05] and

γyrms = e. The selected control structure makes the feedback gain G, the observer gain L,

and the RMS failure boundary e, the design variables. Recall that the separation principle

does not hold. The resulting closed-loop dynamics is given by Equations (3) and (4). Notice

that although the observer is deterministic, all the closed-loop poles are random.

The synthesis approach with w = [20, 1]T leads to a compensator with parameters d2,

for which rλ(0) = 0, e = 0.0139 m/s, ryrms(e) = 3.6 × 10−3 and c = [0, 3.6 × 10−3]T . The

probabilistic analysis of d2 leads to Figures 11-12. Figure 11 shows that the random variable

yrms is moved toward zero, by virtue of the non-fixed failure boundary. In addition, Figure

12 shows Bode magnitude plots of the disturbance to output transfer function, namely Tzy.

Notice that differences in the low-frequency portion of the diagram have a bigger impact

on the RMS value. In addition, considerable variability in the closed-loop Bode magnitude
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Table 3. Uncertainty model.

E ∆E = 1010[5.226, 7.839] fE(E) = B(5, 5)

ρ ∆ρ = [2280, 3420] fρ(ρ) = B(3, 3)

ξ1 ∆ξ1 = [0.08, 0.12] fξ1(ξ1) = B(2, 2)

ξ2 ∆ξ2 = [0.0252, 0.0378] fξ2(ξ2) = B(2, 2)

ξ3 ∆ξ3 = [0.02, 0.03] fξ3(ξ3) = B(2, 2)

ξ4 ∆ξ4 = [0.0304, 0.0456] fξ4(ξ4) = B(2, 2)

ξ5 ∆ξ3 = [0.02, 0.03] fξ5(ξ5) = B(2, 2)

plot as well as a significant reduction in the damping of the first mode are attained near 20

rad/s. It is interesting to notice that even though d2 leads to a robustly stable closed-loop

system in Equation (3), the full-state feedback subsystem Ã1,1 and the full-order observer

subsystem Ã2,2 have a non-zero probability of instability. This indicates that the Separation

Principle artificially reduces the design space once uncertainty is present.

Figure 11. PDFs for the reliability based and the robustness based compensators.
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Figure 12. Bode diagrams of Tzy for d2.

3. Mixed Compensator

Lets take c = [rλ(0), τyrms(0)]T , where the hybrid approach of reference13 will be used for the

stability metric and HSS for the RMS metric. The synthesis algorithm leads to d3, for which

c = [0, 1.34 × 10−4]T . This compensator leads to the dashed line in Figure 11. Comparing

both solutions, we see that while the PDF corresponding to the reliability-based compensator

has less probability of exceeding the boundary value of e = 0.0139 m/s, the robustness-based

compensator leads to a PDF which is much more concentrated toward the ideal value of zero.

This clearly shows that the conceptual differences between the two formulations. Since there

is no conservatism in the selection of the nominal plant, i.e., G(E[p]) is not the most difficult

plant to control, yrms = 0.011 m/s does not necessarily bound the supports of the PDFs. This

can be observed in Figure 11, where the support corresponding to d3 contains yrms = 0.011

m/s.
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4. Mean and Variance based Compensator

For this case we assume c = [bλ(0), τyrms(0)]T , where the FSMSO method will be used

to estimate both indexes. In contrast to the satellite attitude example, the accuracy of

the FSMSO method made it suitable for synthesis. Analytical sensitivities were used in

the moments approximations. For instance, the sensitivities of the closed-loop poles that

determine λ are given by

Ãvj = sjvj

∂sj = zT
j ∂Ãvj

∂2sj = zT
j

[
∂2Ã + (∂Ã− ∂sjI)(sjI− Ã)−1∂Ã + ∂Ã(sjI− Ã)−1(∂Ã− ∂sjI)

]
vj

where zj is the jth eigenvector of ÃT , the right and left eigenvalues are normalized, i.e.

zT
j vj = 1, and and non-repeated poles are assumed. See the work of Burchett and Costello21

for a review on the subject. Derivatives of the output covariance are given by

∂ỹrms =
{

diag
[
C̃∂QC̃T + 2∂C̃QC̃T

]}1/2

∂2ỹrms =
{

diag
[
C̃∂2QC̃T + 4∂C̃∂QC̃T + 2∂2C̃QC̃T + 2∂C̃∂Q∂C̃T

]}1/2

where the derivatives of the state covariance are given by the solution to the set of Lyapunov

equations

Ã∂Q + ∂QÃT + ∂ÃQ + Q∂ÃT + ∂B̃SB̃T + B̃S∂B̃T = 0

Ã∂2Q + ∂2QÃT + 2∂Ã∂Q + 2∂Q∂ÃT + ∂2Ã∂Q+

∂Q∂2ÃT + 2∂B̃S∂B̃T + ∂2B̃SB̃T + B̃S∂2B̃T = 0

The synthesis algorithm leads to d4, for which c = [5.33× 10−6, 1.33× 10−4]T . The resulting

PDF for the RMS is indistinguishable from the one shown in Figure 11 even though the

compensators are different. The CDFs of λ for d3 and d4 are superimposed in Figure

13. As before, the tendency of the formulation of making λ as deterministic as possible is
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apparent. Notice however, that the CPU time required for the analysis of d3 is 421 s while

the one for d4 is 1.22 s. On the other hand, the analysis of d4 via HSS takes 64 s. This

exemplifies substantial savings in CPU time which result from using the FSMSO method.

In this example, those savings justify the labor required to compute analytical derivatives.

The reader must recall, however, that the same method led to inaccurate estimations for the

satellite example.

Figure 13. CDFs of λ for d3 and d4.

VIII. Conclusions

This paper proposes a control synthesis methodology for systems with probabilistic un-

certainty. Synthesis is performed by solving a multi-objective optimization problem which

combines requirements of stability and performance in time- and frequency-domains. In this

study, reliability- and robustness- based formulations are proposed and several numerical

methods for estimation are examined. In a reliability formulation, the probability of violat-

ing design requirements is minimized while admissible domains are contracted toward regions

with an improved performance. In a robustness-based formulation, a random metric that
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measures the concentration of the random variable/process about a target scalar/function is

minimized. These two formulations lead to compensators with distinctive characteristics. In

addition, metrics that bound the reliability metrics proposed, whose estimation only requires

of means and variances, are also derived and used for control design.

Some of the fundamental differences between the proposed strategy and conventional ro-

bust control methods are: (i) unnecessary conservatism is eliminated since there is not need

for convex supports/sets, (ii) the most likely plants are favored during synthesis allowing for

probabilistic robust optimality, (iii) the trade off between robust stability and robust per-

formance can be explored numerically, (iv) the uncertainty set, which could be unbounded,

is closely related to parameters with clear physical meaning and (v) compensators with im-

proved robust characteristics for a given control structure can be designed, e.g. one can

search for a PID controller with best robust characteristics. Examples of attitude control of

a simple satellite model and disturbance rejection of a flexible beam are used to elucidate

the nature of the problem at hand and to demonstrate the methodology.
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